Large-sample Bayesian posterior distributions for probabilistic sensitivity analysis.

نویسندگان

  • Gordon B Hazen
  • Min Huang
چکیده

In probabilistic sensitivity analyses, analysts assign probability distributions to uncertain model parameters and use Monte Carlo simulation to estimate the sensitivity of model results to parameter uncertainty. The authors present Bayesian methods for constructing large-sample approximate posterior distributions for probabilities, rates, and relative effect parameters, for both controlled and uncontrolled studies, and discuss how to use these posterior distributions in a probabilistic sensitivity analysis. These results draw on and extend procedures from the literature on large-sample Bayesian posterior distributions and Bayesian random effects meta-analysis. They improve on standard approaches to probabilistic sensitivity analysis by allowing a proper accounting for heterogeneity across studies as well as dependence between control and treatment parameters, while still being simple enough to be carried out on a spreadsheet. The authors apply these methods to conduct a probabilistic sensitivity analysis for a recently published analysis of zidovudine prophylaxis following rapid HIV testing in labor to prevent vertical HIV transmission in pregnant women.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Sensitivity Analysis Using Large-Sample Approximate Bayesian Posterior Distributions

W a decision analyst desires a sensitivity analysis on model parameters that are estimated from data, a natural approach is to vary each parameter within one or two standard errors of its estimate. This approach can be problematic if parameter estimates are correlated or if model structure does not permit obvious standard error estimates. Both of these difficulties can occur when the analysis o...

متن کامل

Improving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach

A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...

متن کامل

Probabilistic sensitivity analysis: be a Bayesian.

OBJECTIVE To give guidance in defining probability distributions for model inputs in probabilistic sensitivity analysis (PSA) from a full Bayesian perspective. METHODS A common approach to defining probability distributions for model inputs in PSA on the basis of input-related data is to use the likelihood of the data on an appropriate scale as the foundation for the distribution around the i...

متن کامل

Bayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions

The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical decision making : an international journal of the Society for Medical Decision Making

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 2006